An Industrial Collaboration for Thermally Controlled 3D-Printed Metal/Polymer Components

Reading time ( words)

IMDEA Nanociencia’s research led by Dr. Palmero jointly with the company RAMEM has resulted in successful development of thermally controlled 3D-printed proof-of-concept metallic/polymer components. This work constitutes an industrial collaboration with applicability in the aeronautic and aerospace sectors.

One of the main technological challenges when trying to combine metal particles with polymers for the fabrication of functional composites is the possibility of achieving a high metal concentration dispersed in a suitable polymer. Not every polymer is valid for the synthesis of metal-based composites since issues such as solubility are crucial. Challenges extend after the synthesis of the composite to the fabrication of a continuous wire or filament to achieve a high metal content and not just a polymeric product with dispersed metallic particles. This is of extreme importance to end with 3D-printed metal/polymer components providing high thermal conductivity (when needed) and mechanical stability in view of practical applications.

The technological novelty of the work developed by IMDEA Nanociencia and RAMEM comprises: 1) identification of polymers (acrylonitrile butadiene styrene, ABS) adequate to be combined with metallic particles (aluminum and stainless steel) for the synthesis of composites through a scalable method; 2) fabrication of continuous filaments (above 15 m long as proof-of-concept) with high flexibility and a high metal content of 80%; and 3) thermally controlled printing of components using metal/polymer filament, with no need of going to laser assisted methods. This 3D-printing method allows a personalized manufacturing and creation of complex and light geometries.

The fabrication method proposed by Dr. Palmero and coworkers eliminates manufacturing and postprocessing equipment and tooling, and minimizes material waste, saving in this way significant manufacturing cost. Moreover, this thermally controlled 3D-printing method might be combined with standard additive manufacturing technologies for the fabrication of multimaterial and multifunctional metallic components.

In view of potential technological applications in sectors such as aeronautics and aerospace, this work could open a new path (from the composite synthesis to the 3D-printing process) for the fabrication of pieces with controlled and tuned amount of metallic particles, arbitrary designs, and in consequence, tuned physical properties.



Suggested Items

What It Takes to Be a Milaero Supplier, Part 2

03/24/2020 | Anaya Vardya, American Standard Circuits
The decision to pursue military and aerospace (milaero) certification impacts every facet of the organization, and not every shop is prepared to make this transformation. In Part 2, Anaya Vardya focuses on what it takes to be a milaero supplier in the areas of engineering and CAM.

Requirements of Being a MIL-certified Shop

11/12/2019 | Barry Matties, I-Connect007
Barry Matties speaks with American Standard Circuits’ VP of Business Development David Lackey, who has nearly 40 years of experience producing PCBs for the mil/aero market. David talks about what it’s like being a MIL-certified shop and the stringent quality and reporting requirements that it entails.

Small Eye in the Sky: Special Forces Will Soon Have New Enduring ISR Option

04/29/2019 | Lockheed Martin
Combating counterinsurgency, conducting reconnaissance, collecting information vital to national security, United States Special Forces conduct some of the most sensitive and critical missions.

Copyright © 2021 I-Connect007. All rights reserved.