Battery Buffer Takes the Strain


Reading time ( words)

Researchers in China and the US have developed a layered oxide that shrinks when ions are intercalated into it, with the hope of buffering the volume expansion seen in common electrode materials.

Layered oxide materials are very stable, contain large interstitial spaces, and often undergo a volume change, or “strain effect”, when ions are incorporated into their structure. This volume change is detrimental to the electrode as it often results in inferior long-term cycling stability and reduced battery safety. So-called zero-strain materials, where no volume change is seen, are ideal electrode materials. However, these are very rare and most layered oxides exhibit a positive strain effect.

Many layered oxides have the formula AxMO2, and consist of stacked (MO2)n sheets with edge-sharing MO6 octahedra, in between which alkali metal atoms are located at octahedral, tetrahedral, and prismatic sites. Now, Xuefeng Wang at the Chinese Academy of Sciences and co-workers have synthesised Na0.5NbO2, a layered oxide in which the NbO6 clusters are edge-sharing trigonal prisms rather than octahedra. In this structure the sodium and niobium ions are positioned contrary to conventional layered materials.

battery2.JPGNa0.5NbO2 is a rare negative-strain material with high stability, a long cycling life and an impressive rate performance. As Jang Wook Choi, a researcher in the Energy Nanomaterials Group at the Korea Advanced Institute of Science and Technology explains, ‘this is opposite to other cases or common sense, as the volume shrinks even after you put something inside the structure.’ The negative volume effect appears to be a result of enhanced interlayer Na–O interactions and weakened Nb–Nb and Nb–O bonding on sodium intercalation.

Wang and colleagues evaluated Na0.5NbO2 both as an independent electrode material, and as a buffer in composite electrodes with positive-strain materials, in which it counteracts the volume expansion caused by a positive strain effect. The material had a more significant volume effect than other volume buffer materials, as well as being electrically conductive and compatible with electrolytes at the required voltage.

'The limitation of our system lies in the high cost of niobium and the difficulty of synthesis,’ says Wang. ‘But we think that these results will influence the thinking about layered structures and how to design a better electrode for rechargeable batteries.’ (Royal Society of Chemistry)

Share

Print


Suggested Items

Kirigami Inspires New Method for Wearable Sensors

10/22/2019 | University of Illinois
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body’s natural movement becomes ever more crucial. To that end, researchers at the University of Illinois at Urbana-Champaign have developed a method of adopting kirigami architectures to help materials become more strain tolerant and more adaptable to movement.

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.



Copyright © 2021 I-Connect007. All rights reserved.