A Conversation (and Day) with Joe Fjelstad Part 4


Reading time ( words)

We continue the conversation as it turns to the more technically focused area of disruptive technology. The method Joe has been demonstrating for years now is one which is poised to offer dramatic increases in electronic reliability while decreasing overall cost through the elimination of solder--a cornerstone concept of what has been coined as Occam technology (whose name comes from the Ockham's Razor principal of simplicity.)

Joe Fjelstad: Switching gears, I got a call earlier this week from somebody who's interested in some of my connector innovations, which I was kind of surprised and pleased by. Because eight years ago I built an HDMI D-connector, which was about the size of a USB micro or so, but instead of having four pins, it had 19 pins. The device delivered the contact force by means of torsion and it worked perfectly the first time. Unfortunately, most developers stepped back from the D-type because they had reliability problems. Maybe this time it will get some play.  

I just have to be patient because it seems that I see lot of things before their time. Some ideas take 10–15 years to actually develop because you have to somehow purge the old ideas. There's going to be some natural resistance. Incumbent technologies do not want to change. Most people like doing what they did yesterday because they are very good at it. They know what they're doing.

Barry Matties: Let’s talk about the Occam process. Could you give us an overview of that process?

stacked_Occam.jpg

Fjelstad: Thanks for asking about that. I guess I should break it down into its simplest form, conceptually. Fundamentally, rather than putting components on circuit boards and soldering them into place, I am suggesting that one should build circuits on top of component boards. It is basically backwards from the norm. By using this approach, one can eliminate a large number of process steps. And the most troubling of all processes is solder, which the reliability experts say is the major cause of electronics failure; if you trace it, it is going to be a solder joint. That's why we see many of my dear and longtime friends in this industry continuing to get up every day and trying to beat solder into submission. However, I don’t believe it is a process that will ever come to heel. While simple conceptually, with all of its variables, it is just too complex. And the industry seems to just continue to add complexity. That's another funny thing: It is easier to make things more complex than it is to make things simpler, because simplicity requires discipline—much more discipline. There's a great deal of irony in that.

Anyway, the concept works. A lot of people came out early on, and there was quite a bit of immediate backlash because it was viewed as a threat. There were people that would've been very unsettled if it caught on, but I'm not worried about that. It will catch on. Once you get a toehold, you just need to get a little tiny place to wedge. When you demonstrate or someone demonstrates that they can make a product for a fraction of the cost of what they make their products for today, you figure at some point in time that should motivate people to want to move in that direction. The latest generation of what I've come to call a component board I plan to make out of aluminum. In fact, my talk at the aerospace conference a couple of weeks ago was all about making things out of aluminum.

Aluminum makes up 8.3% of the earth's crust. It is the third most abundant element on the planet. With regard to thermal expansion, it is 22ppm/°C, where copper is 18. There's a gap there, but on the other hand the gap isn’t that great. And more interestingly, if you don't have to go through the huge thermal excursions that we have to endure presently, then the amount of strain is minimal.

Matties: You were saying there could be up to six and possibly more excursions now.

Share

Print


Suggested Items

What’s Driving Price Increases for CCL and Prepreg?

01/20/2021 | Mark Goodwin, Ventec International Group
Demand for copper foil is increasing from both PCB and battery production for e-mobility, leading to an upward price pressure for copper foils as post lockdown pent-up demand starts to exceed capacity. Lead times are stretching and prices increasing, particularly for heavy copper foils (2 oz./70 micron and above) as capacity is repurposed to maximize square-meter output for lightweight foils to increase capacity for lithium battery production.

EIPC Technical Snapshot: PCB Surface Finishes

12/28/2020 | Pete Starkey, I-Connect007
For the third in a series of Technical Snapshot webinars, EIPC chose to focus on PCB surface finishes, comparing specific properties, examining corrosion behaviour and discussing selection criteria for low-loss, high frequency applications.

Prices of Copper-Clad Laminates Continue to Rise

12/18/2020 | I-Connect007 China Team
Forces within and outside the PCB industry have led to concerns over rising prices for raw materials of copper-clad laminates (CCL). Recently, two major explosions at epoxy resin plants in China had a great impact on domestic resin suppliers. Prices have risen steadily in 2020, with leading CCL manufacturers announcing price increases of 20-30% recently. As the cost of raw materials such as electronic copper foil, resin and glass fiber have risen, the cost for manufacturing CCL has taken off as well.



Copyright © 2021 I-Connect007. All rights reserved.