High-Voltage Circuit Design Guidelines and Materials


Reading time ( words)

The Hubble telescope, the Cassini-Huygens mission, and other exploratory spacecraft utilize high-voltage DC power supplies for everything from vidicon camera tubes and mass spectrometers to radar and laser technologies. NASA has experienced performance problems with the 1.5 kV supplies because—as a 2006 report stated—“designers did not take the high-voltage problems seriously in the initial design.” The report cited very narrow parts parameters, electrical insulation problems in dielectrics, ceramics, bad geometries, small spacing, the use of the wrong insulating materials, and thermal expansion as causes for the power supply failures.

Designing a circuit that includes high-voltages requires a different—and much more rigorous—approach than seen with other PCB designs. And the need for more attention increases for high-density designs. Along with that approach, design teams also must become familiar with terminology that covers insulation, board materials, clearance, creepage, and altitude. Designers also should have an overall knowledge of regulations that can impact the circuit.

High-Voltage Design Problem-Solving Begins With the PCB Layout

All of us know that proper trace spacing in a PCB design maintains signal integrity and helps with preventing the propagation of electromagnetic interference. In high-voltage PCB design, trace spacing becomes even more important. If we rightfully consider the board as a series of conductive elements, the possibility of differences in potential—creating high-voltage flashover with narrow trace spacing—becomes a certainty.

Along with the IPC-2221 Generic Standard on Printed Board Design that establishes the design principles for interconnections on PCBs, the International Electrotechnical Commission (IEC) and the Underwriters Laboratories (UL) also produced IEC/UL 60950-1, the “Safety of Information Technology Equipment” standard, that describes safety requirements for products and details minimum allowed PCB spacing requirements. As a combination, the standards also set guidelines for PCB layouts that include two important parameters called clearance and creepage.

Using the IEC 60950 definition, clearance equals the shortest distance between two conductive parts, or between a conductive part and the bounding surface of the equipment, measured through air. A small clearance value between two conductors establishes the environment for a high-voltage flashover or arc. Clearance values vary according to the type of PCB material used for the circuit, the voltages, and operating environment conditions such as humidity and dust. Those environmental factors—and others—decrease the breakdown voltage of air and increase the opportunities for a high-voltage flashover and a short circuit.

We can address clearance issues through ECAD/MCAD design principles. Since the bounding surface described in the IEC definition is the outer surface of an electrical enclosure, we can use 3D design tools and design rules to establish the clearance between enclosures and components for rigid and rigid-flex circuits. We can also apply good PCB design principles by isolating high-voltage circuits from low-voltage circuits. Fabricators often recommend placing the high-voltage components on the top side of a multilayer board and the low voltage circuits on the bottom side of the PCB. Other methods involve placing the appropriate insulating materials between high-voltage nodes and over any exposed high-voltage leads.

To read this entire article, which appeared in the January 2022 issue of Design007 Magazine, click here.

Share




Suggested Items

Master the Art of Communication With Manufacturers

06/30/2022 | Kyle Burk, KBJ Engineering
As mentioned in the May issue of Design007 Magazine, design is performed, at times, in a vacuum. But it doesn’t have to be that way. Whenever circumstances allow, design should be performed by communicating with all stakeholders throughout the design process, hence the emphasis on the word with in DWM. Communication can occur through personal correspondence such as email and voice conversations or through more formal design meetings—in person or through videoconferencing. No matter which means of communication you prefer, it’s important to communicate early and often with stakeholders involved in the downstream processes as you bring your project to realization.

Altimade Puts Designers and Manufacturers Together

06/24/2022 | Andy Shaughnessy, Design007 Magazine
Despite all of the talk about the need for communication between designers and manufacturers, many PCB designers still do not talk with their manufacturers for a variety of reasons. Altium and MacroFab aim to change this dynamic. In this interview, Ted Pawela, chief ecosystem officer of Altium and head of Altium’s Nexar Business Unit, and MacroFab CEO Misha Govshteyn, discuss the new Altimade manufacturing service that Altium is introducing in partnership with MacroFab. Ted and Misha provide an overview of the Altimade process, how it links designers to fabricators, assembly providers, and component distributors, and they explain how it could pave the way for true design with manufacturing, or DWM.

The Survey Said: Why Don’t You Know Your Fabricator?

06/23/2022 | I-Connect007 Editorial Team
When we want to find out what challenges our readers are facing, we just ask. And they don’t mind sharing—the good, the bad, and the ugly. In a recent survey, we asked our PCB designer readers, “Why don’t you know who is going to manufacture your boards?” Here are some of more interesting replies we received, edited slightly for clarity. Do you see yourself in these replies?



Copyright © 2022 I-Connect007. All rights reserved.