IQ-Analog Antenna Processor ASIC Powers Lockheed Martin Phased Array Sensors


Reading time ( words)

IQ-Analog Corporation has announced that its Full-Spectrum Conversion® wideband transceiver F1000 Antenna Processor Unit (APU) has been successfully integrated into Lockheed Martin Corporation's next-generation digital prototype active electronically scanned phased array (AESA) sensor. The F1000 is a monolithic application-specific integrated circuit (ASIC) that was developed by IQ-Analog to address next-generation radar, communications, and electronic warfare systems that are transitioning from legacy analog to all-digital antenna processing.

The new inflection point in converged AESA systems is the ability to dynamically reconfigure the array architecture through cognitive software control. This drives a digital processing paradigm that demands elemental digital beamforming which requires ultra-wide conversion bandwidth with digital frequency translation at every array element. These next-generation sensor systems offer concurrent spatial beams and the ability to perform simultaneous radar, communications, and electronic warfare converged functions. Lockheed Martin, together with IQ-Analog, have developed a highly reconfigurable multi-function wideband sensor capability as part of Lockheed Martin's Broadband Electromagnetic Aperture (BEMA) program. 

The key to BEMA's success is the IQ-Analog F1000 APU which offers unprecedented Full-Spectrum Conversion® capability with over 30-GHz of instantaneous bandwidth provided by 64 Giga-sample per second data converters. IQ-Analog's F1000 APU offers over 180 Tera-OPS of digital signal processing capability in a 10mm x 20mm package. The ASIC is manufactured domestically in a 12nm FinFET CMOS process node and leverages a fundamentally unique approach to high-speed data conversion known as Traveling Pulse Wave Quantization® or TPWQ. TPWQ was shown to offer fundamental power, size and cost advantages over universally adopted successive approximation register (SAR)-architecture converters. Furthermore, the F1000 is capable of performing fast frequency hopping and agile band selection entirely in the digital domain and leverages dual RISC-V control processors.

"IQ-Analog's F1000 Antenna Processor is a key component of Lockheed Martin's software-defined phased array sensor electronics enabling Lockheed Martin to demonstrate broadband multi-function multi-mission capabilities including radar, EW, and Communications.  The F1000 offers a high level of improvement in size, weight, and power (SWaP) through monolithic integration of high-speed data conversion and digital signal processing in a FinFET chip. Lockheed Martin's three-year partnership with IQ-Analog has paved the way for the maturation of the next generation of Lockheed Martin's extremely broadband multi-function multi-mission sensors. We are very excited about this partnership and look forward to continuing to work together to achieve our objectives," said Mirwais Zeweri, Lockheed Martin Technical Lead, RMS division.  

"IQ-Analog is proud to work with Lockheed Martin to develop the next generation of military radar, communications, and electronic warfare systems that demand an all-digital approach. IQ-Analog has matured the core research and development we began with DARPA in 2016. The F1000's initial capabilities, as demonstrated in Lockheed Martin's next-generation prototype AESA, have paved the way for a new state of the art in high-speed data conversion," said Michael Kappes, CEO of IQ-Analog Corporation.

IQ-Analog has engaged with Lockheed Martin Corporation as a lead customer in the $16.4B radar systems market and with Air Force Research Laboratories (AFRL) as a direct government customer in the $11.4B military radio market. The F1000 is expected to catalyze a technology refresh of virtually all radar, communications, and electronic warfare systems in the U.S. military.

IQ-Analog's TPWQ technology has dual-use in both military sensors as well as commercial 5G equipment demanding multi-beam frequency-agile antenna systems. The company is developing a family of APUs to accelerate the rollout of 5G networks, addressing both sub-6 GHz and mmWave deployments. IQ-Analog has proven over several generations of products that with TPWQ, it can build the lowest power and smallest form factor APUs. IQ-Analog thus commands a patent-protected integration advantage over the potential competition and is anticipated to obtain a significant share of this high-volume emerging market segment. 

One example of the Company's 5G commercial market solutions was exemplified in a previously announced partnership with NXP Semiconductors' Layerscape® Access family of fully programmable baseband products for 5G Access Edge systems. TPWQ technology-enabled cost-effective monolithic integration of high-speed data conversion with NXP's versatile digital signal processors. This builds on IQ-Analog's rich history of integrated solutions that are in high volume production in mainstream consumer products and communications infrastructure equipment with world-class customers.

Share

Print


Suggested Items

USPAE Launches $42M DoD Consortium

02/11/2021 | I-Connect007 Editorial Team
The I-Connect007 editorial team recently interviewed Chris Peters, Kevin Sweeney and Shane Whiteside, members of the U.S. Partnership for Assured Electronics (USPAE), about the award the association received from the Department of Defense to create the Defense Electronics Consortium. In this conversation, they discuss the objectives of the consortium, which was created to help the government identify and address potential risks in the electronics industry.

Understanding MIL-PRF-31032, Part 6

12/08/2020 | Anaya Vardya, American Standard Circuits
Concluding this six-part discussion on understanding the military printed circuit board performance standard MIL-PRF-31032, Anaya Vardya the remaining procedure required to address the unique requirements of the military.

Understanding MIL-PRF-31032, Part 5

11/17/2020 | Anaya Vardya, American Standard Circuits
Continuing with Part 5 of the discussion on understanding the military PCB performance standard MIL-PRF-31032, Anaya Vardya discusses the remaining three new procedures to address the unique requirements of the military.



Copyright © 2021 I-Connect007. All rights reserved.