3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?

Reading time ( words)

Dr. Amanda Schrand

As a senior engineering group leader for the resilient additive development program at Eglin Air Force Base, Dr. Amanda Schrand spoke about the use of 3D printing for the survivability of printed hybrid electronics. As part of the Airforce Research Lab, her program also works with all branches of the military. She spoke about proof of concept and seemed to be pleased with the success of printed antennas. They use several 3D printing devices, including the nScrypt printer.


Erik Handy

Erik Handy represents SI2 Technologies, which designs, develops, and manufactures RF/microwave and sensor systems for military air, land, and sea, as well as space applications using 3D printing. SI2 uses commercially available and designs its own new materials. Erik discussed considerations for selecting printable materials. Regarding electrical conductor materials, for example, to maximize conductivity for high power handling while minimizing surface roughness for RF efficiency, dielectrics must minimize the loss tangent and provide a dielectric constant.

Erik also spoke about the challenges associated with co-printing dissimilar materials such as processing temperature mismatches, layer to layer adhesion, and more. Then, he gave examples of applications for printed RF systems.

Curtis Hill

Curtis Hill works at NASA’s Marshall Space Flight Center in Huntsville, where one area of focus is using 3D printing in space manufacturing—both on the ISS and “beyond,” with “beyond” referring to inhabiting the moon and, by 2035, Mars. He spoke about the development of flexible sensors that can monitor astronaut health using 3D additive electronics. NASA is also developing the ability to print various metals and its own inks.


Dr. Mark Mirotznik

A professor of electrical and computer engineering at the University of Delaware, Dr. Mark Mirotznik discussed the progress and challenges of 3D-printed electronics for RF devices and systems. He asked, “Since we have gotten so good at making circuits that are low cost and high volume, then why do we need 3D additive?”


One reason, he said, might be the need for small-volume labor-intensive devices and, of course, getting a replacement part in an area such as the ISS where it might take months to have it delivered. His team, however, is focusing on a far more interesting reason: Having the ability to make things where there is no other way to do so. Think about no longer being bound to two-dimensional circuits.


Another reason centers on the ability to use far more advanced materials, higher-conductivity inks, printable thermoplastics, and pastes with a range of electric and magnetic properties. Soon, 3D-printed circuits will enable capabilities that today’s standard circuit fabrication just cannot do. Mark discussed the ability of 3D printing to generate “smart munitions”—ammunition with built-in sensors—as well as other interesting topics.

Dr. Paul Parsons

Dr. Paul Parsons, director of materials research at DeLUX Advanced Manufacturing, was the final speaker. He also works with the University of Delaware on the strength of 3D-printed electronics for RF applications. To begin, he noted that until recently, 3D printing of electronics had been dominated by single material systems, which require parts to move and then deposit dissimilar materials such as dielectrics and conductors. This makes it difficult to incorporate internal features.

However, the emergence of multilateral systems enables the fabrication of complex printed circuit or RF structures within a single system. Dr. Parsons turned his focus to the various types of 3D-printed circuits, which can greatly increase functionality. He noted that being able to produce and seamlessly integrate the connectors into the circuit allows for more complicated RF structures, and then he concluded that it’s critical for the future needs to have materials development.


The webinar concluded with a detailed and interesting Q&A session, and I left with a strong feeling that 3D-printed electronic manufacturing not only has advanced significantly in the past few years, but the rate of advance is increasing exponentially.

These presentations were so loaded with information on both present and future uses of 3D additive circuit and device production, and all I can do here is give you a few highlights. The entire webinar is about two hours and can be viewed online [1].

Also, I have recently seen some companies announce other advances in both equipment and consumables, so I look forward to covering this topic in even greater detail.


  1. The Strength of 3D-Printed Electronics,” nScrypt Inc.


Suggested Items

EIPC Technical Snapshot: Novel Laser-based Manufacturing Processes in Automotive Electronics

09/22/2022 | Pete Starkey, I-Connect007
“Summer is over, now it's back to work!” This was the opening line of the invitation to the 18th EIPC Technical Snapshot webinar, Sept. 14, following the theme of advances in automotive electronics technology, introduced and moderated by EIPC President Alun Morgan. The first presentation, entitled "The fully printed smart component—combining additive manufacturing and sensor printing," came from Jonas Mertin, a thin-film processing specialist at the Fraunhofer Institute for Laser Technology.

EIPC Summer Conference 2022: Day 2 Review

06/29/2022 | Pete Starkey, I-Connect007
Örebro, Sweden on June 15 brought a bright and early start to Day 2 of the EIPC Summer Conference for those who had enjoyed the previous evening’s networking dinner, but had resisted the temptation to over-indulge or to carry on their long-awaited catch-up conversations with old friends into the small hours. All but a few were in their seats for 9 a.m., awake and attentive for Session 4 of the conference, on the theme of new process technologies, moderated by Martyn Gaudion, CEO of Polar Instruments.

Technica Heats Up ROI Discussion

05/17/2022 | I-Connect007 Editorial Team
The I-Connect007 Editorial Team speaks with Technica’s Frank Medina, Ed Carrigan, and Jason Perry about trending hotspots that provide the PCB fabricator a high return on investment (ROI). A theme that carries throughout the conversation is that traditional methods for calculating ROI are being replaced by models that include more qualitative factors.

Copyright © 2022 I-Connect007. All rights reserved.