Mission Control Awarded Contract by Canadian Space Agency to Develop Lunar Surface Autonomous Science Payload


Reading time ( words)

Mission Control Space Services Inc. (Mission Control) is pleased to announce a contract awarded by the Canadian Space Agency (CSA) for the development of a novel payload to advance lunar scientific exploration, the first contract to be awarded under the $150M CSA Lunar Exploration Accelerator Program (LEAP). Titled ASAS-CRATERS (Autonomous Soil Assessment System: Contextualizing Rocks, Anomalies and Terrains in Exploratory Robotic Science), the project leverages previous CSA-funded space technology developments by Mission Control in robotic exploration and artificial intelligence (AI), and will advance Canada’s pioneering role in deep space exploration robotics and science. Mission Control applauds Canada’s rejuvenated support for space exploration. These investments re-affirm Canada’s reputation as a leader in the international space community.

ASAS-CRATERS leverages cutting-edge AI algorithms for terrain classification, novelty detection, and data aggregation, and will advance a planetary rover’s capability to autonomously assess its surroundings for scientific value. It is designed to be a multi-mission system that can support a wide range of scientific payloads and reduce the operational workload of scientists, enabling them to operate their missions more efficiently.

“The new paradigm of commercially-led lunar missions calls for a new wave of AI-powered robotics and we’re ready to offer state-of-the-art technologies that will help enable the future of low-cost and autonomous space missions,” said Dr. Michele Faragalli, Chief Technology Officer at Mission Control.

Mission Control is proud to lead a diverse team of experts in topics ranging from planetary science to robotics and embedded systems for spaceflight. The Science team includes Dr. Gordon Osinski, Director of Research at Western University’s Institute of Earth and Space Exploration (IESE), and Dr. Ed Cloutis, Director at University of Winnipeg’s Centre for Terrestrial and Planetary Exploration. The science team is also supported by Dr. Ryan Ewing of Texas A&M University who was a Surface Properties Scientist for NASA’s MSL rover. The technology will be developed with support from MDA, the world leader in space robotics, and Xiphos Systems Corporation, a Canadian SME that boasts four generations of space products over 17 years. The technology development will also be supported by Dr. Ken McIsaac at Western’s IESE and Dr. Krzysztof Skonieczny at Concordia University.

“Canada is a recognized leader on the global stage in AI, space robotics and embedded systems, and planetary science. ASAS-CRATERS leverages Canadian expertise in all these areas and represents a novel contribution to international space exploration,” said Kaizad Raimalwala, Product & Business Development at Mission Control.

The potential mission opportunity for ASAS-CRATERS would be a very high-profile lunar surface mission, one of the first to deploy science payloads using a commercial model. The development of this technology would help position Canada at the forefront of lunar science in the commercial space age, helping to drive scientific discovery, stimulate economic growth, and inspire the next generation to pursue studies in STEM.

“We’re really excited to develop this technology not only because it will enable cutting edge science for Canadian researchers but because it’s built on Mission Control Software,” said Ewan Reid, President & CEO of Mission Control. “With this project we see a tangible near-term opportunity to deploy AI on the Moon and inspire all Canadians.”

About Mission Control, http://www.missioncontrolspaceservices.com

Mission Control is a space exploration and robotics company with a focus on mission operations, onboard autonomy and artificial intelligence. We develop end-to-end robotic command and control software. Our technology allows customers to operate and automate robots deployed in harsh and remote environments – like the Moon, Mars or even here on Earth—improving the autonomy, productivity, safety, and scientific return of missions. We are also committed to inspiring the next generation of explorers through our immersive technology-based education program, Mission Control Academy, which allows students to operate a real rover, as if it were on Mars. How can we help you navigate the newspace landscape?

Share

Print


Suggested Items

CES 2020: The Intelligence of Things

01/06/2020 | Nolan Johnson, I-Connect007
Show week for CES 2020 starts well ahead of the actual exhibition dates because it is huge. The organizers of CES state that there are more than 4,400 exhibiting companies and nearly three million net square feet of exhibit space. On the floor, you can find 307 of the 2018 Fortune Global 500 companies. Over the week, I-Connect007 Editors Dan Feinberg and Nolan Johnson will bring you some of the most interesting news, products, and announcements from 5G to IoT, semiconductor developments, autonomous vehicle technology, interconnect, fabrication materials, and much more.

NASA Sounding Rocket Technology Could Enable Simultaneous, Multi-Point Measurements — First-Ever Capability

10/21/2019 | NASA
NASA engineers plan to test a new avionics technology — distributed payload communications — that would give scientists a never-before-offered capability in sounding rocket-based research.

For Climbing Robots, the Sky's the Limit

07/15/2019 | NASA
Robots can drive on the plains and craters of Mars, but what if we could explore cliffs, polar caps and other hard-to-reach places on the Red Planet and beyond? Designed by engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence (AI) to find its way around obstacles.



Copyright © 2020 I-Connect007. All rights reserved.