Combination of Techniques Could Improve Security for Internet of Things Devices

Reading time ( words)

A multi-pronged data analysis approach that can strengthen the security of Internet of Things (IoT) devices — such as smart TVs, home video cameras and baby monitors — against current risks and threats has been created by a team of Penn State World Campus students pursuing master of professional studies degrees in information sciences.

Image Caption: A team of Penn State World Campus students have created an approach to strengthen the security of Internet of Things (IoT) devices — such as smart TVs, home video cameras and baby monitors — against current risks and threats. Credit: Bence Boros, Unsplash

“By 2020, more than 20 billion IoT devices will be in operation, and these devices can leave people vulnerable to security breaches that can put their personal data at risk, or worse, affect their safety,” said Beulah Samuel, who is majoring in information sciences. “Yet no strategy exists to identify when and where a network security attack on these devices is taking place and what such an attack even looks like.”

The team applied a combination of approaches often used in traditional network security management to an IoT network simulated by the University of New South Wales Canberra, Australia. Specifically, the team showed how statistical data, machine learning and other data analysis methods could be applied to assure the security of IoT systems across their lifecycle. The researchers then used intrusion detection and a visualization tool, to determine whether or not an attack had already occurred or was in progress within that network.

The researchers describe their approach and findings in a paper to be presented today (Oct. 10) at the 2019 IEEE Ubiquitous Computing, Electronics and Mobile Communication Conference. The researchers received the “Best Paper” award for their work.

One of the data analysis techniques the team applied was the open-source, freely available, R statistical suite, which they used to characterize the IoT systems in use on the Canberra network. In addition, they used machine learning solutions to search for patterns in the data that were not apparent using R.

“One of the challenges in maintaining security for IoT networks is simply identifying all the devices that are operating on the network,” said John Haller, an information sciences major. “Statistical programs, like R, can characterize and identify the user agents.”

The researchers used the widely available Splunk intrusion detection tool, which comprises software for searching, monitoring and analyzing network traffic, via a web-style interface.

“Splunk is an analytical tool that is often used in traditional network-traffic monitoring, but had only seen limited application to IoT traffic, until now,” said information sciences major Melanie Seekins.

Using these tools, and others, the team identified three IP addresses that were actively trying to break into the Canberra network’s devices.

“We observed three IP addresses attempting to attach to the IoT devices multiple times over a period of time using different protocols,” said Andrew Brandon, who is majoring in information sciences. “This clearly indicates a Distributed Denial of Service attack, which aims to disrupt and/or render devices unavailable to the owners.”

As the basis for their approach, the researchers compared it to a common framework used to help manage risk, the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF).

“The NIST RMF was not created for IoT systems, but it provides a framework that organizations can use to tailor, test and monitor implemented security controls. This lends credibility to our approach,” said Brandon.

Ultimately, Seekins said, the ability to analyze IoT data using the team’s approach may enable security professionals to identify and manage controls to mitigate risk and analyze incidents as they occur.

“Knowing what has taken place in an actual attack helps us write scripts and monitors to look for those patterns,” she said. “These predictive patterns and the use of machine learning and artificial intelligence can help us anticipate and prepare for major attacks using IoT devices.”

The team hopes their approach will contribute to the creation of a standard protocol for IoT network security.

“There is no standardization for IoT security,” said Seekins. “Each manufacturer or vendor creates their own idea of what security looks like, and this can become proprietary and may or may not work with other devices. Our strategy is a good first step toward alleviating this problem.”



Suggested Items

Exciting Advances From NVIDIA’s GPU

05/03/2021 | Dan Feinberg, I-Connect007
NVIDIA’s Graphics Processing Technology Conference was, as expected, a showcase of new developments, as well as an opportunity for engineers and developers to learn, enhance skills, and discuss new ideas. Just hearing about all the amazing new developments and the accelerating expansion of AI in virtually all aspects of modern society gives those who attended a better idea of just how much AI is and will continue to change their work and our world.

CES Press Kickoff Presentation

01/07/2020 | Nolan Johnson, I-Connect007
On January 5, Editor Nolan Johnson attended the CES press kickoff presentation “2020 Trends to Watch,” which was hosted by CES Vice President of Research Steve Koenig and CES Director of Research Lesley Rohrbaugh. Koenig and Rohrbaugh set the stage for the week with their presentation, answering the question, “What’s happening in the industry?”

NASA Sounding Rocket Technology Could Enable Simultaneous, Multi-Point Measurements — First-Ever Capability

10/21/2019 | NASA
NASA engineers plan to test a new avionics technology — distributed payload communications — that would give scientists a never-before-offered capability in sounding rocket-based research.

Copyright © 2021 I-Connect007. All rights reserved.