New Material With Magnetic Shape Memory


Reading time ( words)

Researchers at the Paul Scherrer Institute PSI and ETH Zurich have developed a new material whose shape memory is activated by magnetism. It retains a given shape when it is put into a magnetic field. It is a composite material consisting of two components. What is special about the new material is that, unlike previous shape-memory materials, it consists of a polymer and droplets of a so-called magnetorheological fluid embedded in it. Areas of application for this new type of composite material include medicine, aerospace, electronics and robotics. The researchers are now publishing their results in the scientific journal Advanced Materials.

It looks like a magic trick: A magnet moves away from a black, twisted band and the band relaxes –without any further effect (see video). What looks like magic can be explained by magnetism. The black ribbon consists of a composite of two components: a silicone-based polymer and small droplets of water and glycerine in which tiny particles of carbonyl iron float. The latter provide the magnetic properties of the material and its shape memory. If the composite material is forced into a certain shape with tweezers and then exposed to a magnetic field, this shape is retained even when the tweezers are removed. Only when the magnetic field is also removed does the material return to its original shape.

So far, comparable materials have consisted of a polymer and embedded metal particles. Instead, researchers at PSI and ETH Zurich used droplets of water and glycerine to insert the magnetic particles into the polymer. In this way, they produced a dispersion similar to that found in milk. In milk, tiny fat droplets are finely dispersed in an aqueous solution. These are essentially responsible for the white colour.

Similarly, the droplets of the magnetorheological liquid are finely distributed in the new material. "Since the magnetically sensitive phase dispersed in the polymer is a liquid, the forces generated when a magnetic field is applied are much larger than previously reported", explains Laura Heyderman, head of the Mesoscopic Systems Group at PSI and a professor at ETH Zurich. If a magnetic field acts on the composite material, it stiffens. “This new material concept could only come about through teamwork between groups with expertise from two completely different areas – magnetic and soft materials", says Heyderman.

Shape memory through alignment with the magnetic field

 

The researchers studied the new material with the help of the Swiss Light Source SLS, among other things. With the X-ray tomographic images produced with this light source, they found that the length of the droplets in the polymer increases under the influence of a magnetic field and that the carbonyl iron particles in the liquid align at least partially along the magnetic field lines. These two factors increase the stiffness of the material tested by up to 30 times.

The fact that the shape memory of the new material is activated by magnetic fields offers further advantages in addition to higher force. Most shape-memory materials react to changes in temperature. In medical applications, two problems arise as a result. First, excessive heat damages the body's own cells. Second, it is not always possible to guarantee uniform warming of an object that remembers its shape. Both disadvantages can be avoided by switching on the shape memory with a magnetic field.

Share

Print


Suggested Items

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T



Copyright © 2019 I-Connect007. All rights reserved.