Sensitive Robots Feel the Strain

Reading time ( words)

An artificial soft skin imbued with flexible electronics could enhance the way robots sense and interact with their surroundings, KAUST researchers have shown. The team has discovered how to program electrical conductivity and strain sensing into a single material embedded in a stretchy polymer skin. The discovery could also have applications in wearable electronic devices.

When an animal stretches a limb, a network of nerves and sensors within the skin provides feedback that help it orient the limb in space and interact with its surroundings. Embedding a network of strain sensors and connective wiring into a flexible artificial skin would give soft robots similar sensory feedback, helping them autonomously navigate their environment, says Gilles Lubineau, who led the research.

Until now, researchers have used different materials for the sensing and conductive wiring components, adding cost and complexity to the fabrication process, explains Ragesh Chellattoan, a Ph.D. student in Lubineau’s team. “Our objective is to get both sensing and wiring connectivity in the one material,” he says.

nanowires.jpgThe team developed an artificial material comprising a flexible polymer embedded with silver nanowires. Individually, each nanowire is conductive, but high resistance at the junctions between the them limits overall conductivity through the material. The resistance increases markedly when the material is flexed and the nanowires are pulled apart such that the nanowire network acts like a strain sensor.

But that behavior can be altered, the team showed. Applying a DC voltage made the nanowire network very hot at the points of high resistance, where the nanowires meet. This localized heating acts to weld neighboring nanowires together, forming a highly conductive firmly bonded network that is impervious to stretching and flexing. “Electrical welding joins thousands of junctions in the network within 30 seconds,” Chellattoan says. Changing how the current is introduced controls which parts become conductive.

The researchers created a stretchy skin for a toy action figure to demonstrate their material. They coated one of the figure’s legs with the artificial skin and then applied DC voltage only to the leg’s left side before flexing the leg at the knee and observing what happened. On the right side, the nanowire network acted as a strain sensor that could detect leg position as the figure’s knee was bent and straightened; the left side showed high conductivity regardless of leg position.

The next step, Chellattoan says, is to gain greater control over where nanowire welds form. This would give researchers the ability to draw precise conductive patterns into the artificial skin.



Suggested Items

DARPA Tests Advanced Chemical Sensors

05/03/2019 | DARPA
DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed.

Ushering in a New Generation of Low-Cost, Networked, Nuclear-Radiation Detectors

08/30/2016 | DARPA
A DARPA program aimed at preventing attacks involving radiological “dirty bombs” and other nuclear threats has successfully developed and demonstrated a network of smartphone-sized mobile devices that can detect the tiniest traces of radioactive materials.

OrbitOutlook Integrates Largest and Most Diverse Network of Space Sensors Ever to Help Avoid Collisions in Space

07/04/2016 | DARPA
New data-gathering network aims to vastly improve the capability of the U.S. military and the global space community to make decisions about potentially hazardous space objects in near real time

Copyright © 2021 I-Connect007. All rights reserved.