A Charging Electric Car


Reading time ( words)

A possible alternative to traditional batteries has moved a step closer following the announcement that Rolls-Royce has signed a collaboration agreement with Superdielectrics Ltd, in partnership with the Universities of Bristol and Surrey, to explore the potential of using polymers to create next generation high energy storage technology. 

The agreement will see Rolls-Royce combine its world-class material science and technical expertise with Superdielectrics' novel hydrophilic polymers that have been shown by Superdielectrics Ltd, in collaboration with researchers from both universities, to have potentially outstanding energy storage properties. 

Dr Dave Smith, Director of Central Technology, Rolls-Royce, said: "We are very pleased to be working with Superdielectrics Ltd. at a time of rapidly-evolving developments in the energy storage industry. We bring deep experience of materials technology and advanced applications that require high energy storage capabilities with controllable rates of recovery. 

We believe that electrification will play an increasingly important role in many of our markets over the coming years and by working with partners on potential new technologies for energy storage we can ensure that Rolls-Royce is well positioned to take advantage of new developments." 

Jim Heathcote CEO of Superdielectrics Ltd, added: "We are delighted to be working with Rolls-Royce in the global race to develop advanced energy storage systems. This agreement gives us access to their unparalleled scientific and technical expertise. I hope this agreement will ultimately create new jobs and business opportunities in the UK."

Dr Ian Hamerton, Reader in Polymers and Composite Materials from the Bristol Composites Institute (ACCIS) within the Department of Aerospace Engineering at the University of Bristol, commented: "This collaboration is a great opportunity for us to work together to advance supercapacitor technology. Our future challenge is to turn our latest scientific findings into robust engineered devices and realise their ground-breaking potential." 

Working with researchers from the Universities of Bristol and Surrey, Superdielectrics Ltd. has been developing hydrophilic materials, similar to those originally designed for soft contact lenses, to increase the electricity storage capabilities of capacitors, which store electricity by creating electrostatic fields. These potentially exciting dielectric polymers may provide an opportunity to create capacitors that are able to rival – and even exceed – the storage capacity of traditional rechargeable batteries. The resulting supercapacitors may also be able to charge much faster than existing lithium-ion batteries.

Share


Suggested Items

What’s Coming in 3D Printing Technology in 2018

12/27/2017 | Cullen Hilkene, 3Diligent
First, the arrival of extrusion metal printing. Today's extrusion printers are the most prevalent and, arguably, user-friendly 3D Printers in the market. Now, after years of there being zero metal extrusion printers, there will be two in the new year from Desktop Metal and Markforged. These technologies promise new materials and a higher degree of user friendliness for metal printing.

DARPA, Santa Continue HO HO HO-liday Team-Up

12/26/2017 | DARPA
DARPA’s High-speed Optimized Handling of Holiday Operations (HO HO HO) initiative is celebrating its fourth anniversary this year, and the Agency is proud to continue its tradition of sharing breakthrough technologies to help Santa Claus and his elves more quickly and efficiently complete their holiday duties.

International Partners Provide Science Satellites for America’s Space Launch System Maiden Flight

05/30/2016 | NASA
NASA’s new Space Launch System (SLS) will launch America into a new era of exploration to destinations beyond Earth’s orbit. On its first flight, NASA will demonstrate the rocket’s heavy-lift capability and send an uncrewed Orion spacecraft into deep space.



Copyright © 2018 I-Connect007. All rights reserved.